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The aim of the Quantum field theory is to offer a compromise between quantum

mechanics and relativity. The fact that quantum mechanics and relativity are not

compatible can be easily derived from the following fact:

A relativistic 1-particle system with spin 0 is a solution of the equation:

i
∂

∂t
ϕ(x, t) =

√
m2 −∆2ϕ(t, x)

where ϕ is a function of time t and space x and ∆ is the Laplace operator. In

particular, when the initial value x 7→ ϕ(0, x) has compact support, then its time

derivative does not vanish on any nonempty open set. This implies that the prob-

ability that a the particle travel faster that light is not 0. This is problematic

We may find different explanations on why this problem occurs, but one should

agree that in a relativistic theory, space and type should be of the same type. This is

not the case in classical quantum mechanics since position is an observable but time

is not. There are two ways to solve the problem: we can either suppress the time

dependence of the operators (this basically means inserting the time in the Hilbert

space of states), or suppose that the operators have a space-time dependency. We

consider the second option.

1. Wightman axioms

I will try to motivate Wightman axioms from my naive understanding of math-

ematician. We have three basic ingredients:

• the Minkowski space M ,

• an Hilbert space H,

• a 1-dimensional subspace of H.

And a few basic physic intuitions:

• Observables are represented by self-adjoint operators on H,

• If two observables do not interact one with another, the underlying opertors

commute,

• The total energy of a system is bounded below (this comes from the fact

that we would like the system to have a stable equilibrium). We can actually

suppose up to a shift, that the total energy is non negative.

1.1. Minkowski space. We denote by M = (R4, (., .)), the vector space R4 with

the Minkowski product:

(x, y) = x0y0 − (x1y1 + x2y2 + x3y3)

We will denote (x, x) by ||x||2 even if it does not have to be positive. We denote

P (for Poincaré) the group of affine isometries which preserve time direction and
1
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space orientation (the normal subgroup of linear isometries (still preserving time

direction and space orientation) is denoted by L for Lorentz). An element of P can

be thought as a composition of a translation in space time followed by a Lorentz

transformation (that is to say that P is a semi-direct product of L and the group

of the translations which is isomorphic to M). For g in P and x in M , we denote

g · x the image of x by the transformation g.

Definition 1.1. Two elements x and y of M are space-like separated (resp. time-

like separated) if ||x− y||2 < 0 (resp. ||x− y||2 > 0).

1.2. States and Hilbert space. Just as for quantum mechanics, we have a set

of states. It is supposed to be the projective space P(H) of some Hilbert space

(H, 〈.|.〉) (that is the set of line (or ray) in H). There is a subtlety here: a line d in

H may be represented by a any non-zero vector x of d and we might write d = [x].

For any non-zero complex number we have [x] = [zx]. It would be nice to have

for each line d in H a “canonical” representative element x of d in H. We can for

example ask x to be of norm 1, but this is not enough since for all real number

θ, [eiθx] would represent the same line d. This causes problem to define a sum of

states. However the “angle” or actually the cosine of the angle of two lines is well

define: if d1 = [x1] and d2 = [x2] are two lines in H, we set:

〈d1|d2〉 =
| 〈x1|x2〉 |2

〈x1|x1〉 〈x2|x2〉
= 〈d2|d1〉 ∈ [0, 1].

The idea of quantum mechanics is to interpret this quantity as follows: if d1 is the

eigenspace of some observable say O for an eigenvalue λ, and our system is prepared

in the state d2, then 〈d1|d2〉 is the probability that the result of the measurement

by O of our system is λ.

We would like the rules of physic to be invariant by a changing of space-time

frame: if the observer and the system change of space time frame we want that

the result of the measurement satisfies the same law. Let us write down what this

means. If g is an element of the Poincaré group and d is a state, there should

exist another state g · d representing the state d in the space-time shifted by g and

these “changing state” operations should be well-behaved: in particular we want

g · (g′ · d) = gg′ · d. We say that the group P acts on the set of states.

The preservation of the rules of physic means that we want for every element g

in P and all states d1 and d2:

〈g · d1|g · d2〉 = 〈d1|d2〉 .

This imposes a very rigid structure on how the group P intertwines the states:

this actually induces a representation of P on H. Let us detail how this works:

Theorem 1.2 (Wigner). Let u : P(H)→ P(H) be a map such that for all (d1, d2)

in P(H)2, we have 〈u(d1)|u(d2)〉 = 〈d1|d2〉. Then there exists a map U : H → H
either anti-linear and anti-unitary or linear and unitary, such that for all x in H,
u([x]) = [U(x)]. Furthermore, two such maps are equal up to a multiplication by a

complex number of norm 1. We say that U is a lift of u to H.

This means that for each g in P, we can find a lift Ug : H → H. For every g in

P, we can find h in P such that g = h2. Uh ◦ Uh is certainly a lift of (d 7→ g · d)
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and is linear, therefore Ug = eiαUh ◦ Uh is linear. Hence for every g in P, there

exists a linear and unitary lift Ug. We would like to choose the Ug (remember that

we can still multiply them by a complex number of norm 1) such that we have the

following relation:

Ugg′ = Ug ◦ Ug′

This is not always possible because P is not simply connected (we actually have

π1(P) = Z/2Z). That is why we need to work with the universal cover P of P.

This is a “bigger1 version” of the group P.

From the previous discussion we deduce that we expect H to carry a unitary

representation of P the universal covering of the Poincaré group.

One state Ω = [ω] in P(H) should represent the vacuum. Being the vacuum is

invariant under changing of time-space frame. Hence we want that Cω ⊂ H to be

a one-dimensional sub-representation of P. Quite often in the literature the state

Ω is assumed to be the only one to fulfill this condition.

1.3. The Poincaré group and its friends. Similarly to P, the group P is a

semi-direct product of M with the universal covering L of L. In particular M is a

subgroup of P. It is worthwhile to note that this subgroup is commutative.

The time evolution of the system is contained in the representation of P since the

translations in time (actually in space as well) are elements of P. The expectations

we should have about the time evolution does not deal with the long time but rather

with infinitesimal time. Fortunately we have the following theorem:

Theorem 1.3 (Stone). If ρ is a strongly continuous unitary representation of R
in an Hilbert space W , then there exists an (unbounded) self-adjoint operator A :

W →W with domain D such that for all t in R we have ρ(t)|D = exp(itA).

For x0 in R, let us denote by Ux0
the unitary operator corresponding to a transla-

tion of time by x0. The previous theorem implies that we have a certain unbounded

self-adjoint operator P0 with domain D such that (Ux0)|D = exp(ix0P0). In other

words P0 encodes the infinitesimal time evolution at the level of the Hilbert spaceH.

This operator should represent the energy for a physical reasons I cannot explain.

The same discussion about the space translations gives the existence of −P1,

−P2 and −P3. The operators P0, P1, P2 and P3 commute two by two because M

is abelian. We may consider their joint spectrum σ(P ).

Definition 1.4. Let Q1, . . . , Qr a collection of two by two commuting self-adjoint

operators. The joint spectrum of Q1, . . . , Qr is the set of element (λ1, . . . , λr) of Cr

such that for all (t1, . . . , tr) in Cr,
∑r
i=1 λiti is in the spectrum of

∑r
i=1 tiQi.

As I said in the introduction, we want to impose the energy to be non-negative.

Furthermore we want this condition to remain valid when we change of space-time

frame. The non-negativity of the energy in all frame is equivalent to say that the

joint spectrum of P0, P1, P2, P3 is in the positive light cone:

C+ = {x ∈M |x0 > 0 and (x, x) > 0}.

1We have a canonical map: p : P → P which is a group morphism and is 2 : 1.
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That is the set of points in the space time which are time-like separate with 0 and

happens after 0.

1.4. Fields. Just like in quantum mechanic, we have observables. Physically ob-

servables correspond to quantities which could be measured in a laboratory. The

paradigm of quantum mechanics is that observables are represented by some self-

adjoint operators on an Hilbert space. In the following sense: For some reasons,

Suppose we have a system in a state d and that an observer measures an observable

O. Suppose for sake of simplicity that there exist an orthonormal Hilbert-basis

(xn)n∈N of eigenvectors of O associated to (real, because O is self-adjoint) eigenval-

ues (λn)n∈N, suppose furthermore that all the eigenvalues are distinct. Then the

probability that the measurement is λi is equal to 〈[xi]|d〉. In particular if d = [x],

the real number2〈x|Ox〉 / 〈x|x〉 should be the average of the measurement if we

iterate the experiment infinitely many times.

Of course here, our observables have to deal with the Minkowski space. The

first guess is that a given measurement can be performed at different places and at

different times. This means that we want a priori an observable O to be a function

from M to the space of self-adjoint operators on H. It turns out that this will not

be a good definition. Let us such a function from M → O(H) a mock-observable.

We would like “the rules of physic” to be invariant under changing of space-time

frame. As we already discussed, changing of space-time frame is encoded by an

element of P at the level of P(H), and by an element of P at the level of H. This

is why we ask to have the following equality for all g in P, x in M , all y1 and y2 in

H and all mock-observables O:〈
U(g−1)y1|O(x)U(g−1)y2

〉
= 〈y1|O(g · x)y2〉

As this should hold for every y1 and y2, we obtain (because U(g−1) = U∗(g)):

U(g)O(x)U(g)∗ = O(g · x)

Let us consider the vacuum state Ω and O1 and O2 two mock-observables

(or mock fields). Experiences show that we should have observables (or mock-

observables) such that 〈Ω|[O1(0M ), O2(0M )]Ω〉 6= 0.We can consider the function:

t(O1, O2) : M → C
x 7→ 〈Ω|[O1(x), O2(0M )]Ω〉 = 〈Ω|[UxO1(0M )U∗x , O2(0M )]Ω〉 ,

where Ux = exp(ix0P0 − ix1P1 − ix2P2 − ix3P3). If we complexify the Minkowski

space, we can write:

t(O1, O2)(x+ iy) =
〈
Ω|O1(0M )U∗x+iyO2(0M )Ω

〉︸ ︷︷ ︸
real analytic on a big set

− 〈Ω|O2(0M )Ux+iyO1(0M )Ω〉︸ ︷︷ ︸
real analytic on another big set

.

As we will see in a moment, we expect to have [O1(x), O2(0M )] = 0 when x is

space-like. This implies that the two above mentioned functions agree on a big set.

A theorem on real analytic functions called the edge-of-the wedge theorem, would

then imply that 〈Ω|[O1(0M ), O2(0M )]Ω〉 = 0.

This shows that we want the observables to be “generalized” function: in fact we

want them to be tempered distribution: for every smooth function f : M → R such

2It could be infinite.
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that all its differentials decrease faster than any (inverse of) polynomials, (this set

is denoted S(M), S is for Schwartz, the element of S(M) are called test functions)

we have a self adjoint operator O(f): An observable is a function:

O : S(M)→ O(H).

It is worthwhile to note that the group P acts on S(M) via the following formula:

g · f : M → R
x 7→ f(p(g−1) · x)

where p : P → P is the canonical projection from the universal covering of P on P.

1.5. Causality. One of the paradigm of quantum mechanics can be sum up this

way: if two measurements do not interact with each other, then the corresponding

self-adjoint operators should commute. In the context of QFT this has a special

implication since we want that no information travels faster than light.

Let us consider two test functions f1 and f2 whose supports are space-like sep-

arated. This means an information which would be shared by the two supports

would have to travel faster than light. Let O1 and O2 be two observables. We want

to have:

[O1(f1), O2(f2)] := O1(f1)O2(f2)−O2(f2)O1(f1) = 0

1.6. Domain. We want to be able to measure every combination of observable

(maybe with uncertainty), hence we want to have a common dense domain D

included in the domain of all observables and stable by the observables. Hence we

actually want that the previous equality holds (at least) on D.

1.7. The axioms. We can now give Wightman axioms. A QFT consists of:

• an Hilbert space (H, 〈.|.〉),
• a subspace Cω of H of dimension 1,

• a unitary representation of P in H (denoted by g 7→ U(g)),

• a collection (Oi)i∈I of operator-valued distributions on M with a common

dense domain D which are self-adjoint (or symmetric) on their common

domain.

such that:

Vacuum The space Cω is a sub-representation of H (sometimes Cω is required to

be the only sub-representation of H of dimension 1).

Nice domain For every test function f and i ∈ I, Oi(f)(D) ⊆ D.

Equivariance For all g in P , all i in I and all test function f :

U(g)Oi(f)U(g)∗ = Oi(g · f).

Causality For all (i, j) ∈ I2 and all (f1, f2) ∈ S(M)2 with space-like separated sup-

port:

[Oi(f1), Oj(f2)]|D = 0.

Spectrum The joint spectrum of the operators Pj (see section 1.3) is contained in C+.

There are two last axioms. The first one makes sure that we are not considering

an artificially too big Hilbert space:
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Completeness We can approximate any operator on H by linear combinations of products

of (Oi(f))i∈I,f∈S(M). That is the sub-algebra of the algebra of operators

on H generated by (Oi(f))i∈I,f∈S(M) is dense.

The words “approximation” and “dense” have no precise meanings here, but we

can phrase it in a rather algebraical way: we suppose that no closed subspace of H
is stable by all the operators (Oi(f))i∈I,f∈S(M).

Furthermore, we expect that some kind of physical law govern the time evolution

of the universe. The last axiom says:

Time-slice axiom It is possible to achieve completeness when restricting the function f ∈
S(M) with domain contained in Uε,t := {x ∈M ||x0 − t| < ε} for an arbi-

trary small ε and an arbitrary time.

In other words, the initial conditions completely encodes the development of the

system (and its backward development).

2. Haag–Kastler axioms

From the Wightman axioms, we can construct for each open subset U of M an

algebra A(U): this is the subalgebra of O(H) generated by the operators Oi(f)

where f is any smooth function which has support included in U . An element of

A(U) is a polynomial in the variable Oi(f). In the framework of the Wightman ax-

ioms, the operators Oi(f) are typically not bounded. In the Haag–Kastler axioms,

we suppose that these operators are all bounded. This means that this algebra is

endowed with a norm. We may ask how the observation we made before can be

translated in this new context.

We now forget (in the formalism, not for the intuition) about the observables

Oi(f) and we consider the following abstract data (which is called net of algebras):

U 7→ A(U)

We still want to think of A(U) to act naturally on a certain Hilbert space.

Therefore, we should have a notion of complex conjugate: We want the algebras

A(U) to be endowed with an involution ∗ : A(U) → A(U) compatible with the

structure of C-vector spaces such that ||xx∗|| = ||x||2. This is were we need the

operators to be thought as bounded. In mathematical terms, this means that the

algebras A(U) are C-∗-algebras.

If U1 ⊆ U2, a function with support included in U1 has support included in

U2. From this we deduce, that we would like to have for every inclusion U1 ↪→ U2
an injection iU1,U2A(U1) ↪→ A(U2). Actually we would like some compatibility of

composition of inclusion:

• For every open set U , we require iU,U = idA(U),

• For any open sets U1 ⊆ U2 ⊆ U3, we require iU1,U3 = ıU2,U3 ◦ iU1,U2 .

If we have U1 ⊆ U2 ⊂ O3 In mathematical terms, this means that we want to have

a pre-cosheaf of C-∗-algebras over M .

If U = U1 ∪ U2, a function whose support is included in U can be expressed as

a sum of a function with support included in U1 and a function included in U2.

This translated into the following requirement: The algebra A(U) is generated as

an algebra by iU1,U (A(U1)) + iU2,U (A(U2)).
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We still want the rules of physics to be invariant under the change of space-time

frame. For every element g of P and every open set U in M , we want to have

isomorphisms αg,U : A(U)→ A(gU) with the following properties:

αg′,gU ◦ αg,U = αg′g,U and αg−1,U = α−1g,g−1U .

This is the equivariance axiom.

To translate the causality axiom we need to consider U1 and U2 two space-like

separated open subsets of M . We would like to say that the two algebras commute.

This has a meaning only if we can compare these algebras. We can write:

[iU1,U (A(U1)), iU2,U (A(U2))] = {0},

where U = U1 ∪ U2.

The time-slice axiom can be rephrased like this: the evolution of the system

follows some local rules. Therefore, we expect that the algebra A(U) to be the

same as the algebra A(Û) where Û is the set of all points which are not space-like

separated from U : This means that the injection iU,Û is an isomorphism.

If we want to have the Hilbert space back, we want to represent the net of

algebras A(•) on an Hilbert space H. This means the following: for each open

set U , we have a morphisms of algebras φU : A(U) → O(H) compatible with the

injections: if U ′ ⊂ U , we should have:

φU ′ = φU ◦ iU ′,U .

We should have a group morphism Ψ : P → U(H) (where U(H) is the group of

unitary transformation of H) which intertwines the α’s: We can think of U(H) as

acting on O(H), with this formalism we want to have for each g ∈ P and each open

set U :

Ψ(g) ◦ φU = φgU ◦ αg,U .
The vacuum and the spectrum axiom can phrased exactly like in the Wight-

mann setting.
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