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1 Fusion Categories

1.1 Abstract Definition

Definition 1. A fusion category is a rigid semisimple abelian C-linear mon-
oidal category with only finitely many isomorphism classes of simple objects
and such that the unit object is simple.

Examples.

1. Vect - the category of finite dimensional complex vector spaces.

2. G-Rep - the category of finite dimensional representations of a finite
group G.

“monoidal category”

A monoidal category is a category C equipped with

1. a tensor product ⊗ : C × C −→ C,

2. a unit object 1 ∈ C,

3. associators (x⊗ y)⊗ z
ax,y,z−→ x⊗ (y ⊗ z),

4. unitors 1⊗ x
λx−→ x and x⊗ 1

ρx−→ x,

satisfying the following coherence relations :

1



1. The pentagon identity

(x⊗ y)⊗ (z ⊗ w)

((x⊗ y)⊗ z)⊗ w x⊗ (y ⊗ (z ⊗ w))

(x⊗ (y ⊗ z))⊗ w x⊗ ((y ⊗ z)⊗ w)

ax,y,z⊗wax⊗y,z,w

ax,y,z⊗1w

ax,y⊗z,w

1x⊗ay,z,w

2. The triangle identity

(x⊗ 1)⊗ y (x⊗ 1)⊗ y

x⊗ y

ax,1,y

ρx⊗1y 1x⊗λy

Theorem 2 (McLane). Any two (formal) compositions of a, λ, ρ are equal.

We use string diagrams to represent objects and morphisms of monoidal
categories.

“C-linear abelian”

• All Hom-sets C(x, y) carry the structure of a C vector space and com-
position is C-linear.

• C behaves like a category of modules over a commutative ring. In
particular we have direct sums, kernels and cokernels and they behave
in the usual way.

“semisimple”

This means that every object of C can be written as a finite direct sum of
simple objects. An object x is called simple if End(x) = C1x.

Lemma 3 (Schur). If x, y are simple objects that are not isomorphic then
C(x, y) ∼= 0.

• We write I for the set of isomorphism classes of simple objects and we
pick representative simple objects e1, . . . , en ∈ C, where n = |I|.
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• It follows from semisimplicity that C � Vectn as categories. However,
the tensor product ⊗ of C is not determined by this equivalence.

• Let x, y ∈ C. After choosing bases for the spaces C(ei, x) and C(ei, y)
for all i ∈ I we can think of morphisms x −→ y as block matrices.

• In Vect the only simple object is the ground field C.

“rigid”

This means that all objects of C have left and right duals.

• A left dual for an object x ∈ C is an object ∗x together with morphisms
ηx : 1 −→ x⊗ ∗x and εx : ∗x⊗ x −→ 1 such that the snake identities
hold:

• A right dual for x is an object x∗ together with morphisms η̃x : 1 −→
x∗ ⊗ x and ε̃x : x⊗ x∗ −→ 1 such that the snake identities hold:
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• Left and right duality structures are (up to canonical isomorphisms)
unique if they exist.

• Left and right duality define monoidal functors ∗(−), (−)∗ : Cop,rev −→
C.

• For all x there exists some isomorphism ∗x ∼= x∗.

• In Vect left and right duals agree and are given by the dual vector
space. Here ε is the evaluation pairing and η picks out the tensor
corresponding to the identity map under V ∗ ⊗ V ∼= End(V ).

• Rigidity can be seen as a finiteness condition. A vector space has a
dual in this sense if and only if it is finite dimensional.

Example.

1. The category VectωG of G-graded vector spaces, for G a finite group and
ω ∈ H3(G, C×). It has simple objects Cg, g ∈ G and Cg ⊗ Ch

∼= Cgh.
The associators (up to equivalence) are determined by ω.

2. Many examples come from representations of Hopf Algebras and of
vertex operator algebras.
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1.2 Fusion Categories in Coordinates

Fusion Coefficients

• The fusion coefficients or fusion rules of C are the non-negative integer
numbers Nk

ij := dimC C(ek, ei ⊗ ej), for i, j, k ∈ I.

• By taking isomorphism classes we obtain the Groethendieck ring C[C]
of C. Addition corresponds to ⊕ and multiplication to ⊗. It has a
basis consisting of the classes of simple objects and it is completely
determined by the Nk

ij .

• The associativity of the multiplication amounts to
�

ν

Nν
ijN

l
νk =

�

ν

N l
iνN

ν
jk =: N l

ijk.

F-matrices

We fix once and for all bases {λα
ijk} for C(ei ⊗ ej , ek) and dual bases {λijk

ᾱ }
for C(ek, ei ⊗ ej).

• For fixed indices i, j, k, l the decompositions

C(ei ⊗ (ej ⊗ ek), el) ∼=
�

ν

C(ej ⊗ ek, eν)⊗ C(ei ⊗ eν , el)
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and

C((ei ⊗ ej)⊗ ek, el) ∼=
�

ν

C(ei ⊗ ej , eν)⊗ C(eν ⊗ ek, el)

give rise to two bases of C((ei ⊗ ej)⊗ ek, el):

The coefficients of the base change are called the F -symbols and are
the entries of the F -matrices.

• They encode the data of the associators and can be computed as
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• The pentagon identity in coordinates becomes the system of equations

�

δ

(Fm
ijq)

δrε
αpβ(F

m
rkl)

νsµ
δqγ =

�

ξ,t,η,σ

(F p
jkl)

ξtη
βqγ(F

m
itl)

νsσ
αpξ(F

t
ijk)

µrε
σtη

for all ν, s, µ, r, ε and α, p,β, q, γ.

Lemma 4. A fusion category is uniquely determined by its fusion rules N k
ij

and F -symbols (F l
ijk)

γqδ
αpβ.

Examples.

1. The Fibonacci category has two simple objects, 1 and τ , satisfying
τ ⊗ τ ∼= 1⊕ τ . The F -symbols are given by

2. Z2 −Vect has two simple objects e0 and e1 and identity associators.

1.3 Traces and Dimensions

Definition 5. A pivotal structure on C is an isomorphism of monoidal
functors ∗(−) ∼= (−)∗. This means that we have isomorphisms px : ∗x ∼= x∗

for all x that satisfy extra coherence conditions.
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• Conjecture: Every Fusion category allows a pivotal structure. This is
true for all known examples.

• Given a pivotal fusion category C the left- and right traces of f ∈
End(x) are defined by

We will henceforth assume trl(f) = trr(f) =: tr(f) for all f . This
property of C is known as sphericality.

• For x ∈ C we define its quantum dimension as dim(x) = tr(1x). We
have di := dim(ei) �= 0 for all simple objects ei. We have tr(fg) =
tr(gf) tr(f⊗g) = tr(f)tr(g). The quantum dimension gives an algebra
homomorphisms C[C] −→ C. It follows from sphericality that we have
dim(x∗) = dim(x).

• There exists a unique algebra homomorphism C[C] −→ C that takes
only positive real values. It assigns a numbers d+i to each simple object
ei, its so called Frobenius-Perron dimension, satisfying

d+i d
+
j =

�

k

Nk
ijd

+
k .

• The global dimension of C is given by D(C) := �
i∈I |di|2 ∈ R>0 and

the Frobenius-Perron dimension D+(C) :=
�

i∈I(d
+
i )

2. They satisfy
D(C) ≤ D+(C). If this is an equality we say that C is pseudo-unitary.

8



Modular Fusion Categories

Definition 6. A modular fusion category (called modular tensor categories
in the non-Hamburg literature) is a ribbon fusion category with an invertible
s-matrix.

“ribbon”

• This means that we have a braiding and a twist.

• A braiding amounts to a natural isomorphism σx,y : x ⊗ y
∼=−→ y ⊗ x

denoted graphically as

The σx,y are required to satisfy coherence equations that read graph-
ically as follows:
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• The R-matrices are defined component wise by

• A twist is a natural family of isomorphisms θx : x
∼=−→ x, satisfying
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• Using these relations one can show that

�

β

(Rk
ij)

β
α(R

k
ji)

γ
β =

θk
θiθj

δα,γ

• A ribbon category comes endowed with a canonical pivotal structure,
defined using braiding and twist.

s-matrices and Modularity

• The s-matrices are defined by

• They can be computed by

sij =
�

k

θk
θiθj

Nk
ijdk.

• C is called modular if its s-matrix is invertible.

• The “modular” in “modular fusion category” comes from a (projective)
action of the modular group SL2(Z) that is generated by the matrices
s and t = diag(θi).
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Examples. 1. Z2-Vect has trivial R-matrices and can not be endowed
with a modular structure. However with a different braiding and non
trivial associator this is possible. (Semion MFC.)

2. Fibonacci-category has twist θ1 = 1, θτ = e
4πi
5 , braiding Rττ

1 = e−
4πi
5 ,

Rττ
1 = e

3πi
5 .

Drinfeld Center

Definition 7.

• The Drinfeld center Z(C) of a fusion category C is a higher categorical
analogue of the center of an algebra.

• The objects of Z(C) are pairs (x,β) where x is an object of C and

β is a natural family of isomorphism βy : x ⊗ y
∼=−→ y ⊗ x such that

βy⊗z = (1y ⊗ βz) ◦ (βy ⊗ 1z)

• A morphism (x,β) −→ (y,ϕ) is a morphism f ∈ C(x, y) such that for
all z ∈ C we have (1z ⊗ f) ◦ βz = ϕz ◦ (f ⊗ 1z).

• The tensor product is given by (x,β)⊗(y,ϕ) = (x⊗y, (β⊗1y)◦(1x⊗ϕ))

• The Drinfeld-Center of a fusion category is modular.

• If C is already a modular fusion category then Z(C) ≡ C � C̃.

• Z(Z2 −Vect) = (Z2 × Z2)−Vect.
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