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1 Fusion Categories

1.1 Abstract Definition

Definition 1. A fusion category is a rigid semisimple abelian C-linear mon-
oidal category with only finitely many isomorphism classes of simple objects
and such that the unit object is simple.

Examples.
1. Vect - the category of finite dimensional complex vector spaces.
2. G-Rep - the category of finite dimensional representations of a finite

group G.

“monoidal category”
A monoidal category is a category C equipped with
1. a tensor product ® : C x C — C,
2. a unit object 1 € C,
3. associators (z ©y) ®@ z =5 2 © (y © 2),
4. unitors 1 ® x RN and 2 ® 1 2%

satisfying the following coherence relations:



1. The pentagon identity
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2. The triangle identity

Gx,1,y

> x®1

MA

Theorem 2 (McLane). Any two (formal) compositions of a, \, p are equal.
We use string diagrams to represent objects and morphisms of monoidal

categories.

“C-linear abelian”

e All Hom-sets C(z,y) carry the structure of a C vector space and com-
position is C-linear.

e C behaves like a category of modules over a commutative ring. In
particular we have direct sums, kernels and cokernels and they behave
in the usual way.

“semisimple”

This means that every object of C can be written as a finite direct sum of
simple objects. An object x is called simple if End(z) = C1,.

Lemma 3 (Schur). If z,y are simple objects that are not isomorphic then
C(z,y) =0.

e We write [ for the set of isomorphism classes of simple objects and we
pick representative simple objects e1, ..., e, € C, where n = |I|.



e It follows from semisimplicity that C ~ Vect™ as categories. However,
the tensor product ® of C is not determined by this equivalence.

e Let z,y € C. After choosing bases for the spaces C(e;, ) and C(e;,y)
for all ¢ € I we can think of morphisms * — y as block matrices.

e In Vect the only simple object is the ground field C.
“rigid”
This means that all objects of C have left and right duals.
e A left dual for an object x € C is an object *x together with morphisms

Ny 1 — 2 ®*xr and ¢, : *x ® © — 1 such that the snake identities
hold:
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e A right dual for x is an object z* together with morphisms 7, : 1 —
¥ ®x and €, : x ® ¥ — 1 such that the snake identities hold:



e Left and right duality structures are (up to canonical isomorphisms)
unique if they exist.

e Left and right duality define monoidal functors *(—), (—)* : CP*®V —

CKWC_ M

e For all z there exists some isomorphism *x & z*.

e In Vect left and right duals agree and are given by the dual vector
space. Here ¢ is the evaluation pairing and n picks out the tensor
corresponding to the identity map under V* @ V = End(V).

e Rigidity can be seen as a finiteness condition. A vector space has a
dual in this sense if and only if it is finite dimensional.

Example.

1. The category Vect¢: of G-graded vector spaces, for G' a finite group and
w € H3(G,C*). Tt has simple objects Cy, g € G and Cy ® Cp, = Cgyp,.
The associators (up to equivalence) are determined by w.

2. Many examples come from representations of Hopf Algebras and of
vertex operator algebras.



1.2 Fusion Categories in Coordinates
Fusion Coefficients

e The fusion coefficients or fusion rules of C are the non-negative integer
numbers Nikj :=dimc C(eg, e; @ ¢e;j), for 4,5,k € I.

e By taking isomorphism classes we obtain the Groethendieck ring C[C]
of C. Addition corresponds to @& and multiplication to ®. It has a
basis consisting of the classes of simple objects and it is completely
determined by the NZ-IE-.

e The associativity of the multiplication amounts to
l l N
ZNz‘VjNuk = ZNiV ]Vk = Nijk'
14 14

F-matrices

We fix once and for all bases {Afj; } for C(e; ® ej, ex) and dual bases (AR}
for C(ex, e; ® €;).

~

e For fixed indices i, j, k,[ the decompositions

Clei @ (ej ®eg),e) = @C(@j ® ek, e,) @C(e; ® ey, e€)
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and

C((ei®@ej) ® ek, €1) = @C(ei ®ej,e,) ®C(ey @ e, €)

give rise to two bases of C((e; ® ej) ® ex, €;):

The coeflicients of the base change are called the F'-symbols and are
the entries of the F'-matrices.

e They encode the data of the associators and can be computed as

;JLa «pP




e The pentagon identity in coordinates becomes the system of equations
1 t t
D EGDAs (ERss = D (F)b (Bt (Bl
6 §tn,o

for all v, s, i, r,e and o, p, 3,4, 7.

Lemma 4. A fusion category is uniquely determined by its fusion rules Ni];

l 0
and F-symbols (Fijk);gﬁ'
Examples.

1. The Fibonacci category has two simple objects, 1 and 7, satisfying
T®T =16 7. The F-symbols are given by
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2. Zo — Vect has two simple objects eg and e; and identity associators.

1.3 Traces and Dimensions

Definition 5. A pivotal structure on C is an isomorphism of monoidal
functors *(—) = (—)*. This means that we have isomorphisms p, : *z = z*
for all x that satisfy extra coherence conditions.



e Conjecture: Every Fusion category allows a pivotal structure. This is
true for all known examples.

e Given a pivotal fusion category C the left- and right traces of f €
End(z) are defined by

1V, )= @@f
be 0=

We will henceforth assume tr;(f) = tr,(f) =: tr(f) for all f. This
property of C is known as sphericality.

e For © € C we define its quantum dimension as dim(z) = tr(1;). We
have d; := dim(e;) # 0 for all simple objects e;. We have tr(fg) =
tr(gf) tr(f®g) = tr(f)tr(g). The quantum dimension gives an algebra
homomorphisms C[C] — C. It follows from sphericality that we have
dim(z*) = dim(z).

e There exists a unique algebra homomorphism C[C] — C that takes
only positive real values. It assigns a numbers dj to each simple object
e;, its so called Frobenius-Perron dimension, satisfying

+ 0+ _ k g+
dfdf => Nfdf.
k

e The global dimension of C is given by D(C) := >, |di|* € R and
the Frobenius-Perron dimension DT (C) := Y_,.,(d;")?. They satisfy
D(C) < DT(C). If this is an equality we say that C is pseudo-unitary.



Modular Fusion Categories

Definition 6. A modular fusion category (called modular tensor categories
in the non-Hamburg literature) is a ribbon fusion category with an invertible
s-matrix.

“ribbon”

e This means that we have a braiding and a twist.

o

e A braiding amounts to a natural isomorphism o, , : 2 ®y — y @ x
denoted graphically as

The o, 4, are required to satisfy coherence equations that read graph-
ically as follows:

5, -4

9



e The R-matrices are defined component wise by

°1/\ " JZ}?\E
§\ = Z%J)*, 4
b LY

(a3

e A twist is a natural family of isomorphisms 6, : *t — x, satisfying
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e Using these relations one can show that

k k _
%:(Rij)g(Rji)g’ = %5%7

e A ribbon category comes endowed with a canonical pivotal structure,
defined using braiding and twist.

s-matrices and Modularity

e The s-matrices are defined by

%@%

N /H Ul 4}/ (((
Ss\)” "\"“ 4 ;)\J‘
&1

1,81,

e They can be computed by

0]{) k
k

e C is called modular if its s-matrix is invertible.

e The “modular” in “modular fusion category” comes from a (projective)
action of the modular group SLo(Z) that is generated by the matrices
s and t = diag(0;).
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Examples. 1. Zs-Vect has trivial R-matrices and can not be endowed
with a modular structure. However with a different braiding and non
trivial associator this is possible. (Semion MFC.)

2. Fibonacci-category has twist 61 = 1, 0, = e%, braiding RT™ = e~ gi,

3mi

R™=¢%".

Drinfeld Center

Definition 7.

e The Drinfeld center Z(C) of a fusion category C is a higher categorical
analogue of the center of an algebra.

e The objects of Z(C) are pairs (z,3) where x is an object of C and

B is a natural family of isomorphism 3, : x ® y = y ® x such that
By@z = (ly & ﬁz) o (ﬁy & 1z)

e A morphism (z,8) — (y, ) is a morphism f € C(z,y) such that for
all z € C we have (1, ® f)of, =¢.o(f®1,).

e The tensor product is given by (z, 8)®(y, ¢) = (z®y, (6®1y)o(1,®¢))
e The Drinfeld-Center of a fusion category is modular.

e If C is already a modular fusion category then Z(C) = C KX C.

o Z(Zy — Vect) = (Z2 x Z2) — Vect.
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