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Introduction

There is always a tension between the fact that we have access
only to small systems (i.e. with a small number of relevant degrees
of freedom) and the fact that these small systems are (not
completely isolated) parts of a bigger system.

In classical physics this is not that dramatic. Once we know e.g.
the electromagnetic field F locally we also know it globally. This
may be formalized by choosing an open cover (Ui ) of spacetime,
selecting 2-forms Fi on Ui satisfying Maxwell’s equations

dFi = 0 , δFi = 0

and coinciding on intersections,

Fi = Fj on Ui ∩ Uj ,

then there is a unique solution F on the whole spacetime, given by

F =
∑

Fiχi

with some partition of unity adapted to the covering.
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In quantum physics, the situation is different: Consider a system
consisting of 2 independent spin-12 systems. The observables of the
whole system form the 4× 4-matrices where the subsystems are
given by matrices of the form A⊗ 12 and 12 ⊗B, respectively, with
2× 2-matrices A,B and the unit matrix 12 in 2 dimensions.
A typical (pure) state is given by the density matrix

ρ =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


The induced states on the subsystems are then obtained by a
partial trace and given by the density matrices

ρ1 = ρ2 =
1

2

(
1 0
0 1

)
.
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The partial states will not change if we transform ρ by a unitary of
the form U = U1 ⊗ U2,

ρ 7→ U∗ρU ,

with unitary 2× 2-matrices U1,U2,

trU∗ρU(A⊗ 12) = trρ1U1AU
∗
1 = trρ1A .

Hence it is impossible to retrieve the state of the full system from
the states of the subsystems. Using Bell’s inequalities, one can
even show that ρ cannot be approximated by mixtures of states of
product form (separable states),

ρ′ =
∑

λiρ
(i)
1 ⊗ ρ

(i)
2 , λi ≥ 0,

∑
λi = 1

One says, that ρ is entangled.
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States of the form above have to be carefully prepared and one
might object that the correlations have been imposed by the
preparation.
A surprising effect without any joint preparation is the Hanbury
Brown-Twiss effect.

There astronomers measure correlations of light intensities from far
away sources. If we understand light emission as the creation of a
photon, the effect concerns coincidences of 2 completely
independent photons which arrive at two spacelike separated
detectors.

The observed correlations are due the fact that the photons are
indistinguishable and satisfy Bose statistics. Therefore the
2-photon states cannot have product form and are necessarily
entangled.
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Observables and states

In quantum physics it has turned out to be useful to distinguish
observables and states. Observables may be considered as
measuring procedures, whereas states are procedures for preparing
a system for measurement. It is a matter of choice whether part of
the preparation is subsumed into the measurement procedure or
not.
Mathematically, the observables can be considered as elements of
an associative unital ?-algebra (preferably a C*- or von Neumann
algebra in order to have nice functional analytic structures). States
associate to every selfadjoint element a probability measure for the
outcome of a measurement. It is convenient to realize them as
linear functionals ω on the algebra which satisfy the conditions of
positivity

ω(A∗A) ≥ 0

and are normalized
ω(1) = 1 .
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The values of the functional are interpreted as expectation values,
and the full probability distribution can be obtained from its
moments given by ω(An).

Choices for observables and states:
Quantum mechanics:
Observables are bounded operators on some Hilbert space and pure
states are unit rays of the Hilbert space. Mixed states are density
matrices with the rank 1 density matrices (1d-projections) as pure
states.
Advantage: Hilbert space techniques allow very detailed
calculations and estimates for systems with small number of
particles.
Disadvantage: For large systems one often has to consider limits in
form of convergence of expectation values where the limit cannot
be described by a density matrix in the original Hilbert space.
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Wightman functional:
The theory is defined in terms of a sequence Wn of distributions in
n variables which has to satisfy certain axioms (the Wightman
axioms).

These distributions are interpreted as the expectation values of
products of fields at different points of spacetime. In this case the
algebra of observables is the Borchers-Uhlmann algebra i.e. the
tensor algebra over the test function space with complex
conjugation as involution.

The sequence (Wn)n∈N0 yields a state W on this algebra by

W (f1 ⊗ · · · ⊗ fn) := Wn(f1 ⊗ · · · ⊗ fn) .
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A variant of this is the euclidean path integral where the
correlation functions, analytically continued to the euclidean
region, are the correlation functions of a probability distribution.

If the latter satisfy the Osterwalder-Schrader axioms, the
Wightman functions can be rediscovered, again by analytic
continuation.

In these formulations all dynamical and algebraic information is
contained in the state whereas the algebra only depends on the
type of fields which occur. Therefore, nonlocal and local features
are mixed.

In particular it is not obvious how different states of the same
system are characterized. This problem occurs e.g. for states with
different temperatures.
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Algebraic formulation

For a suitable family K of globally hyperbolic subregions O of some
spacetime M one associates algebras of observables A(O)
satisfying the Haag-Kastler axioms:

Isotony: For each inclusion O1 ⊂ O1 there exists an
embedding iO2O1 : A(O1)→ A(O2) such that
iO3O2 ◦ iO2O1 = iO3O1 holds whenever O1 ⊂ O2 ⊂ O3.

Locality: If O1 ∪ O2 ⊂ O and O1 is spacelike separated from
O2, then

[iOO1(A), iOO2(B)] = 0

for all A ∈ A(O1),B ∈ A(O2).

Covariance: If the symmetries g of the spacetime induce
bijections on K then there exist isomorphisms
αg : A(O)→ A(gO) such that αg ◦ αh = αgh.

Timeslice: If O ⊂ O1 contains a Cauchy surface of O1 then
iO1O is an isomorphism.
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If K as a partially ordered set with respect to inclusion is directed,
i.e. for all O1,O2 ∈ K there exists some O ∈ K such that

O1 ∪ O2 ⊂ O ,

then one can associate a unique C*-algebra A(M) to the spacetime
M which is characterized by the following conditions:

There exist homomorphisms iO : A(O)→ A(M) such that

iO ◦ iOO1 = iO1

whenever O1 ⊂ O.

For any C*-algebra B and homomorphisms jO : A(O)→ B
satisfying

jO ◦ iOO1 = jO1

there is a unique homomorphism ϕ : A(M)→ B such that

jO = ϕ ◦ iO .
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A(M) is called the inductive limit of the Haag-Kastler net on M
and is also known as the algebra of quasilocal observables. It has
the following nice properties

The homomorphisms iO are faithful and hence isometric.⋃
O iO(A(O)) is dense in A(M).

The closed ideals in A(M) are generated by local elements
iO(A). In case the algebras A(O) are simple also A(M) is
simple.

Spacetime symmetries act by automorphisms on A(M).

Klaus Fredenhagen Locality and Quantum Physics



Topological obstructions

Complications arise if the set of subregions K is not directed.

Let us look at the example of chiral conformal fields which can be
described by a Haag-Kastler family of algebras associated to
nondense and nonempty open intervals I ⊂ S1. Since the set of
these intervals is not directed, the inductive limit construction no
longer works.

Nevertheless, the universality conditions for the algebra associated
to the full space S1 remain meaningful and characterize a unique
(up to isomorphy) C*-algebra which in terms of category theory is
a so-called colimit.

This colimit, however, has in general a more complicated structure
than the inductive limit. First of all, it might happen that the
homomorphisms iI : A(I)→ A(S1) are not injective.
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Typically, however, one starts from a family of faithful
representations πI of A(I) on a fixed Hilbert space H such that

πI ◦ iII1 = πI1

for I1 ⊂ I. Then, by the universality condition, there is a unique
representation π of A(S1) on H with

π ◦ iI = πI ,

and therefore also iI has to be faithful.

But the global algebra A(S1) may contain nontrivial ideals even if
all the local algebras A(I) are simple. These ideals are, in general,
related to topological invariants of the spacetime.
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As an example we consider a chiral subalgebra of the free massless
field ϕ in 2 dimensions. It is generated by the chiral currents
j = ∂uϕdu (in lightcone coordinates). A C*-algebra A(I)
associated to an interval I is generated by the Weyl operators

W (f ) = e i
∫
f j

with smooth real valued functions f with suppf ⊂ I and the
product

W (f )W (g) = e−
i
2

∫
fdgW (f + g) .

Since the antisymmetric form σ(f , g) =
∫
fdg is non degenerate on

D(I), the algebras A(I) are simple. The algebra associated to S1,
however, contains also the Weyl operators W (c) with the constant
function c on S1. But the extension of σ to all smooth functions
on S1 is degenerate, and the algebra has a nontrivial center
generated by the operators W (c), and hence also nontrivial ideals.

Klaus Fredenhagen Locality and Quantum Physics



Another example is the even subalgebra for chiral Majorana
fermions on S1. The algebra of canonical anticommutation
relations CAR(H) over a real Hilbert space H is the unital
C*-algebra characterized by the condition:

There is a real linear map B : H → CAR(H) such that
B(f )∗ = B(f ) and

B(f )2 = ||f ||2 .

Given any unital C*-algebra B and any real linear map
B ′ : H → B satisfying the above conditions then there is a
unique homomorphism ϕ : CAR(H)→ B with ϕ ◦ B = B ′.
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The even subalgebra is the unital C*-algebra CAR(H)even
generated by the elements b(f , g) = B(f )B(g). It is characterized
by the relations:

b : H × H → CAR(H)even is bilinear

b(f , f ) = ||f ||2

b(f .g)b(g , h) = ||g ||2b(f , h)

b(f , g)∗ = b(g , h) .

Let HI = L2(I,R) with natural embeddings HI ↪→ HJ for I ⊂ J .
We then have the algebras A(I) = CAR(HI)even with the induced
homomorphisms iJI . The algebra A(S1) is generated by the
elements

bI(f , g) = iI(b(f , g)),

f , g ∈ HI with the obvious relations. There is, however, no a priori
relation between bI(f , g) and bJ (f , g) if I ∪ J = S1 and
suppf , suppg ⊂ I ∩ J .
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Let I1 ∩ I2 = ∅ and J± ⊃ I1 ∪ I2, J+ ∪J− = S1, and let f ∈ HI1 .
g ∈ HI2 with ||f || = ||g || = 1. Then

Y = bJ+(f , g)bJ−(g , f )

has the following properties:

Y is independent of the choices of f , g , I1, I2,J±
Y ∈ Z(A(S1))

Y 2 = 1

Y ∗ = Y

The algebra is therefore a direct sum

A(S1) = A(S1)+ ⊕ A(S1)−

corresponding to the eigenvalues of Y . This decomposition refers
to the Ramond (periodic b.c.) and Neveu-Schwarz (anti-periodic
b.c.) sectors.
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Generalizations

The construction of the colimit corresponds to families of
representations πO of A(O) in some Hilbert space H with the
compatibility condition

πO = πO1 ◦ iOO1 .

Such families are in 1-1 correspondence to representations π of the
colimit A(M) with πO = π ◦ iO.

A more general situation occurs in the presence of inner
symmetries. An inner symmetry is a family α = (αO)O of
automorphisms of A(O) with

α ◦ iOO1 = iOO1 ◦ α

for O1 ⊂ O.
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One may then modify the embeddings i•• by choosing for each
inclusion O1 ⊂ O2 an inner symmetry αO2O1 such that

αO3O2αO2O1 = αO3O1

Then the transformed embeddings

iαO2O1
= iO2O1 ◦ αO2O1

satisfy the compatibility condition, i.e. for O1 ⊂ O2 ⊂ O3

iαO3O2
◦ iαO2O1

= iO3O2 ◦ αO3O2 ◦ iO2O1 ◦ αO2O1

= iO3O2 ◦ iO2O1 ◦ αO3O1 = iαO3O1

In case αO2O1 = βO2(βO1)−1 for a family of inner symmetries βO,
the new system is equivalent to the old one. This is always true if
K is simply connected.
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In case K is not simply connected one finds non isomorphic
systems, e.g. Isham’s twisted fields (see B. Lang, Ph.D. thesis,
York 2014).

If the group of inner symmetries is compact one can pass to the
subnet of invariants. There the embeddings are unique, and one
obtains the colimit as before. The occurence of twists in the
original net should then be visible in the structure of the center of
the algebra, as observed in examples, but this has to be checked in
the general case.
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Conclusions and Outlook

Given the local algebras of observables one can construct the
global algebra as a colimit. Its structure contains interesting
topological information. In the presence of a compact group of
inner symmetries the colimit of the net of algebras of invariant
observables seems to be the appropriate object.

In the case of non compact symmetry groups a more general
concept, as e.g. the homotopical colimit (Benini, Schenkel,
Szabo), seems to be a promising choice.

An interesting and largely open problem is the generalization of the
theory of superselection sectors to the generally locally covariant
case. One expects new sectors corresponding to topological
invariants. Some work in this direction was done by Brunetti and
Ruzzi (2008), partially based on ideas of Roberts.
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